Radial Fourier Multipliers in High Dimensions
نویسندگان
چکیده
Given a fixed p 6= 2 we prove a simple and effective characterization of all radial multipliers of FL(R) provided that the dimension d is sufficiently large. The method also yields new L space-time regularity results for solutions of the wave equation in high dimensions.
منابع مشابه
Hankel Multipliers and Transplantation Operators
Connections between Hankel transforms of different order for L-functions are examined. Well known are the results of Guy [Guy] and Schindler [Sch]. Further relations result from projection formulae for Bessel functions of different order. Consequences for Hankel multipliers are exhibited and implications for radial Fourier multipliers on Euclidean spaces of different dimensions indicated.
متن کاملCharacterizations of Hankel Multipliers
We give characterizations of radial Fourier multipliers as acting on radial L functions, 1 < p < 2d/(d + 1), in terms of Lebesgue space norms for Fourier localized pieces of the convolution kernel. This is a special case of corresponding results for general Hankel multipliers. Besides L −L bounds we also characterize weak type inequalities and intermediate inequalities involving Lorentz spaces....
متن کاملOn radial Fourier multipliers and almost everywhere convergence
We study a.e. convergence on L, and Lorentz spaces L, p > 2d d−1 , for variants of Riesz means at the critical index d( 1 2 − 1 p )− 1 2 . We derive more general results for (quasi-)radial Fourier multipliers and associated maximal functions, acting on L spaces with power weights, and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformation...
متن کاملÜ Bounds for Spectral Multipliers on Nilpotent Groups
A criterion is given for the Lp boundedness of a class of spectral multiplier operators associated to left-invariant, homogeneous subelliptic second-order differential operators on nilpotent Lie groups, generalizing a theorem of Hörmander for radial Fourier multipliers on Euclidean space. The order of differentiability required is half the homogeneous dimension of the group, improving previous ...
متن کاملThe bilinear Bochner-Riesz problem
Motivated by the problem of spherical summability of products of Fourier series, we study the boundedness of the bilinear Bochner-Riesz multipliers (1 − |ξ| − |η|)+ and we make some advances in this investigation. We obtain an optimal result concerning the boundedness of these means from L × L into L with minimal smoothness, i.e., any δ > 0, and we obtain estimates for other pairs of spaces for...
متن کامل